Soils, Resilience and Stateand-Transition Models

Objectives:

- (1) Illustrate how two different types of soil properties contribute to resilience through their direct and indirect effects on ecosystem processes, and through feedbacks with plants
- (2) Discuss how this information can be used to guide the sampling of dynamic soil properties

Resilience (see Bestelmeyer talk #1):

- Engineering resilience: how quickly a system returns to its previous status (e.g., within a state)
- Ecological resilience: capacity of a system to absorb a disturbance without fundamental changes to its characteristic processes and feedbacks (i.e., whether a system returns to (or maintains) its previous status). Can include both resistance to change and capacity to recover.

${\bf SpotThe Difference.com}$

Explorer Game - Brown Level - Tulips

Find 4 differences.

${\bf SpotThe Difference.com}$

Explorer Game - Brown Level - States

Find 4 differences.

Give up

${\bf Spot The Difference.com}$

Explorer Game - Brown Level - States

Find 4 differences.

Give up

SpotTheDifference.com

Explorer Game - Brown Level - States

SpotTheDifference.com

Explorer Game - Brown Level - States

	Resilience is	
	affected by	reflected by
Relatively "static"	Slope Aspect Mineralogy Depth Texture	

Relatively "static" soil properties affect resilience

Relatively "dynamic" soil properties both affect and reflect resilience

Relatively "dynamic"

Structure/water holding SOM (A horizon)

Gullies

Structure/infiltration Rills

State-Transition model: MLRA 42, SD-2, Upland sandy site group: Sandy

ESIS: R042XB012NM accessed 1/28/08

State-Transition model: MLRA 42, SD-2, Upland sandy site group: Sandy

ESIS: R042XB012NM accessed 1/28/08

(2) Resilience

Incomplete recovery:
vegetation drought resistance
was lower in the degraded
plots

Summary

- changes in dynamic soil properties in response to one disturbance (OHV) can *may* reduce future resilience relative to another type of disturbance (e.g. drought)
- Disturbance response varies with soils and plant communities
- Long-term studies are required to define both patterns and processes

But what happens when relatively static properties become dynamic?

Changes in a relatively static soil property (soil surface texture) generated by a state change in an upwind ecological site may generate soil deposition, triggering soilplant feedbacks that result in changes in both dynamic soil properties and plant community composition

State Changes due to Shrub Invasion (N. Hansen study)

mesquite encroachment

reduction or loss of grassland vegetation

increased soil erosion in interspaces

redeposition of soil into coppice dunes

mesquite encroachment

reduction in grassland vegetation

sand deposition over fine-textured grassland soils

increased erosion

State Changes due to Shrub Invasion (N. Hansen study)

Study Site: Red Lake USDA-ARS Jornada Experimental Range

3.7 km Pierce Tank Fleming Tank Red Lake Red Lake **JER** CDRRC

Summary

- Soil accumulation since 1950's in both grassand mesquite-dominated areas
- Similar or greater accumulation in the mesquite band than grass patches
- General pattern consistent in 2 areas
- •Combining with buried A-horizon, historic air photo analyses *may* help determine the extent to which soil deposition affects the resilience of tobosa grasslands (see N. Hansen's 2008 thesis...)

Summary: Soil Processes

- Changes in relatively dynamic soil properties can change the current resilience of the plant community
- Changes in relatively static soil properties can change both current and potential future resilience
- Modeling based on an understanding of soil processes, in addition to space-fortime studies, will be necessary to understand and predict resilience changes.

Implications for Sampling

- Stratify with relatively static properties (associated with soil map unit components and ecological sites). Where necessary, sub-divide strata (e.g. plant-interspace or shoulder vs. backslopes).
- Characterize (1x) "static" properties, focusing on those that with greatest effects on resilience.
- Monitor dynamic properties. Where necessary, sub-divide strata (e.g. plant-interspace or shoulder vs. backslopes).
- CEAP implications: areas that are most susceptible to soil degradation (Δ dynamic properties) or erosion (Δ static properties) are not necessarily the same as those where either degradation or erosion is most likely to change resilience.

